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Abstract. We use Wegner’s flow equation method to investigate the infinite-U periodic Anderson model.
We show that this method poses a new approach to the description of heavy fermion behaviour. Within
this scheme we derive an effective Hamiltonian in which the c and f degrees of freedom are decoupled.
By evaluating one-particle energies as well as correlation functions we find an electronic structure which
comprises two gapped quasiparticle bands. We also address the lattice Kondo temperature, which shows
a typical exponential dependence on the hybridisation energy. This energy scale exhibits a significant
decrease compared to that of the single impurity Anderson model.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 71.27.+a Strongly correlated electron
systems; heavy fermions – 75.30.Mb Valence fluctuation, Kondo lattice, and heavy-fermion phenomena

1 Introduction

Heavy fermion systems (HFS) have triggered a growing
interest in both experimental and theoretical physics over
the last decades. They are mainly based upon lanthanide
or actinide compounds, thus their physics is dominated
by the interplay of itinerant (3d) electrons and rather lo-
calised electrons from partly filled 4f or 5f electron shells.
These systems generally posses rich phase diagrams, and
they show intriguing physical phenomena, such as super-
conductivity, long-range magnetic order, Fermi-liquid and
non-Fermi-liquid behaviour, and in many cases magnetism
and superconductivity coexist. Despite much theoretical
effort, many open questions remain even for the param-
agnetic metallic phase. At low temperatures this phase is
generally characterised by the existence of heavy quasi-
particles, which lead to a strongly enhanced specific heat
coefficient as well as an enhanced susceptibility. Experi-
ments suggest that the effective mass of the quasiparticles
is in the region of several hundreds up to thousand bare
electron masses. On a microscopic basis, HFS can be de-
scribed by the periodic Anderson model (PAM) and the
Kondo lattice model (KLM). Whereas the first describes a
system of localised f electrons and conduction electrons,
which interact via a hybridisation, the latter yields the
microscopic picture of a periodic range of magnetic mo-
ments in a metallic host. In the so-called Kondo limit
the KLM can be regarded as an effective model for the
PAM. The physics of both models is associated with the
Kondo effect [1], which was initially examined in connec-
tion with a single magnetic impurity interacting with a sea
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of free conduction electrons. The typical energy scale for
this interaction is provided by the Kondo temperature TK,
which shows an exponential dependence on the hybridisa-
tion strength. This relation cannot be understood in terms
of conventional perturbation theory. Beside systems that
involve f electrons, heavy fermion behaviour has also been
observed in LiV2O4 [2]. It is believed that the occurrence
of a heavy Fermi liquid state is driven by the frustration
of the intersite spin couplings [3].

About 10 years ago Wegner [4] and independently
G�lazek and Wilson [5] proposed a scheme with the ob-
jective to diagonalise or block-diagonalise Hamiltonians
on the basis of a continuous unitary transformation. This
method is known as the flow equation method and has
been used for the theoretical description of a great variety
of physical systems. In a recent application this method
was used to investigate the Hubbard model, a paradigm
for a strongly correlated lattice system [6]. Although the
authors treated the system on the basis of perturbation
theory, they obtained excellent results in the regions of
moderate and even strong coupling. In this paper we ap-
ply the flow equation method to the infinite-U PAM in
order to describe the physics of the paramagnetic metallic
phase of HFS. Thereby we do not consider perturbative
arguments with respect to the hybridisation strength. We
focus on the electronic structure, which suggests the ex-
istence of heavy quasiparticles, and show that the lattice
Kondo temperature features an exponential dependence
on the hybridisation strength. This paper starts off with
some general remarks regarding the method and the mi-
croscopic model. Afterwards we discuss the application of
the method as an approach to the PAM. The last part is
devoted to a detailed discussion of our findings.
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2 Model and method

2.1 Periodic Anderson model

The PAM is the standard model for the description of
heavy fermion systems. Supposing the Coulomb repulsion
of the local f electrons being the dominant energy scale
in the system, this model can be written in the form

HPAM =
∑

kσ

εk c†kσckσ +
∑

iσ

εf f̂ †
iσ f̂iσ

+
1√
N

∑

kiσ

Vk

(
c†kσ f̂iσ e−ikRi + f̂ †

iσckσ eikRi
)
. (1)

In this representation f̂ †
iσ creates an f electron on site i

with spin σ. Due to the infinitely strong Coulomb repul-
sion of two f electrons doubly occupied sites are explicitly
excluded. This is done by the use of Hubbard operators
rather than usual fermionic creation and destruction op-
erators:

f̂ †
iσ = f †

iσ

∏

σ′

(
1 − nf

iσ′
)

= f †
iσP 0

i (2)

f̂iσ =
∏

σ′

(
1 − nf

iσ′
)
fiσ = P 0

i fiσ. (3)

Here nf
iσ denotes the number operator for the f electrons.

The essential property of the Hubbard operators is that
the creation operator f̂ †

iσ only acts on an empty site i, and
the operator f̂iσ only annihilates a singly occupied state.
The operator P 0

i stands for the projector on the empty f
site i. In this context the physical subspace merely com-
prises singly occupied and empty f -sites. As a consequence
the completeness relation P 0

i +
∑

σ f̂ †
iσ f̂iσ = 1 holds, and

the operators obey the following anti-commutation rela-
tions

{
f̂ †

iσ, f̂i′σ′
}

+
= δii′

(
δσσ′ f̂iσ f̂ †

iσ + f̂ †
iσf̂iσ′

)
. (4)

The Fourier transform of the Hubbard operators can be
defined in the usual way as f̂ †

kσ = 1/
√

N
∑

i exp(ikRi)f̂
†
iσ,

where N is the number of lattice sites. However, the
above introduced commutation relations for the Hubbard
operators in the local picture result in rather complex
commutation relations for the operators f̂ †

kσ and f̂kσ. In
equation (1) c†kσ creates a conduction electron with mo-
mentum k and spin σ. Whereas the f electrons are lo-
calised, the conduction electrons possess a dispersion εk.
The two subsystems are connected via a hybridisation of
the strength Vk. Although, in general, a dispersive hy-
bridisation may be examined, we here focus on the case
Vk = const., i.e. an interaction which is restricted to elec-
trons on the same lattice site only. As a further simpli-
fication we only consider a hybridisation between c and
f electrons within the same spin channel.

The model (1) has been in the focus of a great variety
of theoretical investigations. One of the most descriptive
ones is the slave-boson mean-field (SBMF) theory [7]. Here

the Hubbard operators are treated by the introduction of
auxiliary boson fields, which ensure the conservation of
the commutation relations. On the other hand, the con-
figuration space of the particles must be restricted due
to their bosonic character. This can be accomplished by
considering the constraint with the help of additional cou-
plings in the Hamiltonian. The used Lagrange multipliers
have to be determined self-consistently. For this model the
problem can be solved in the limit νf → ∞, where the lat-
ter quantity denotes the spin degeneracy of the f orbitals.
A quite similar treatment of the model is provided by
the Gutzwiller variational method [8], which can also be
formulated in terms of auxiliary bosons [9]. The intrigu-
ing result of this approach is an instability of the ground
state with respect to ferromagnetic ordering for the case
νf = 2, and the Kondo temperature is significantly en-
hanced compared to the single impurity case.

Though the analytical approaches to the PAM have
given insight to various aspects of heavy fermion systems,
they generally have to deal with more or less rude simpli-
fications. In the last decade a range of numerical solutions
emerged. A great number of recent works are based on the
Dynamical mean-field theory (DMFT) [10]. Here the PAM
can be mapped onto an effective single impurity Ander-
son model (SIAM). This approach proves to be exact in
infinite dimensions, and it is considered to deliver good re-
sults even for three-dimensional systems. The major task
of this scheme is a self-consistent numerical solution of the
impurity problem, whereby a number of methods, such
as Wilson’s numerical renormalisation group (NRG) [11],
Quantum Monte Carlo (QMC) simulations [12] and it-
erated perturbations theory (ITP) [13], have been used.
Other numerical approaches comprise the diagonalisation
of small clusters [14] and QMC [15] for the full system. As
the numerical results of Section 5 are obtained for a one-
dimensional system, we should mention that this system
and the corresponding KLM have been extensively studied
in the framework of the Density Matrix Renormalisation
Group (DMRG) [16]. Various studies of the KLM suggest
this system being in the universality class of Luttinger liq-
uids. The phase diagram of the one-dimensional PAM was
subject of a series of recent works [17].

Some basic properties of the model equation (1) have
also been discussed in the framework of a renormalisation
approach by Becker et al. [18], which incorporates the use
of hard cut-off functions. However, the authors use pertur-
bation theory with respect to the hybridisation strength
and neglect processes that connect different f sites, which
is not sufficient to obtain the proper heavy fermion be-
haviour.

2.2 Flow equation method

The flow equation method is based on the formulation of a
continuous unitary transformation. For this reason in var-
ious works this approach is referred to as CUT. The trans-
formation is represented by a unitary Operator U(�), for
a given Hamiltonian H . Here � denotes the flow param-
eter [19] and the according transformed Hamiltonian is
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simply given by H(�) = U(�)HU †(�). By definition the op-
erator U(1) stands for the identity operator and the fully
transformed Hamiltonian H(� = ∞) is written as H∗. The
latter may be regarded as an effective Hamiltonian, and
due to the unitarity of the mapping it possesses the same
system of eigenenergies as H . The flow of H(�) can be
conveniently formulated in its differential representation

dH(�)
d�

=
[
η(�), H(�)

]
(5)

and it is governed by the generator

η(�) =
dU(�)

d�
U †(�) = −η†(�). (6)

This operator can be chosen to map H onto a much sim-
pler Hamiltonian. If one starts out, for instance, with a
Hamiltonian of the structure H = H0 + H1, where H0

represents a system of free particles and H1 an interac-
tion, the choice

η =
[
H0, H1

]
(7)

indeed triggers the interaction part to vanish in the limit
� → ∞. This can be proved by some simple calculation
and equation (7) represents the original choice of the gen-
erator by Wegner [4]. In this context the resulting ef-
fective Hamiltonian is diagonal or block-diagonal. Beside
Wegner’s generator, in the recent years a variety of di-
verse generators has been used. As we have mentioned
in the introductory section, an independent approach for-
mulated by G�lazek and Wilson was made, in which the
Hamiltonian is diagonalised by integrating out higher en-
ergy contributions. Another choice for the generator was
proposed by Knetter and Uhrig [20]. It has the intriguing
feature that it allows the construction of a particle-number
conserving effective Hamiltonian.

Independent of the choice of any particular generator,
the transformation can as well be applied to formulate the
flow of observables. Similar to the structure we have de-
rived for the Hamiltonian, an arbitrary operator is trans-
formed as

dA(�)
d�

=
[
η(�), A(�)

]
. (8)

As a result of this we can take advantage of the invariance
of expectation values and correlation functions under uni-
tary transformations. In this sense these quantities can be
evaluated with respect to the much simpler Hamiltonian
H∗ by the simultaneous transformation of the operators.
If we regard for example the expectation value of an ob-
servable A, the relation

〈A〉 =
TrAe−βH

Z
=

TrA∗e−βH∗

Z
(9)

holds, where Z is the partition function.
The above considerations are instructive for the eval-

uation of Green’s functions. If we address, for instance,
the retarded Green’s function 〈〈A(t); B(t′)〉〉 = −iθ(t −
t′)〈{A(t), B(t′)}+〉, we can use the fact that these quanti-
ties are invariant with regard to a unitary transformation.

This allows us to evaluate the expectation value and the
Heisenberg time dependence of the operators with respect
to the transformed Hamiltonian H∗, if we use the trans-
formed operators A∗ and B∗ at the same time. In terms of
the Fourier transformed Green’s function this can be sim-
ply denoted as 〈〈A; B〉〉(ω + iδ) = ∗〈〈A∗; B∗〉〉∗(ω + iδ).

3 Flow equations for the periodic Anderson
model

After having discussed the general aspects of the model
and the method we now focus on the application of the
flow equation approach to the infinite-U PAM. This sec-
tion is organised as follows. First we introduce an appro-
priate generator with the objective to map the model onto
a much simpler one, and subsequently we discuss the flow
of the Hamiltonian. In a second step the transformation of
observables is examined and the evaluation of expectation
values is discussed. The last part of this section then is
devoted to the solution of the resulting flow equations.

3.1 Flow of the Hamiltonian

As we have mentioned in the introductory remarks regard-
ing the flow equation method an appropriate choice of the
generator is provided by (7). The aim of our treatment of
the PAM is the decoupling of the distinct types of elec-
trons, namely the c electrons and the f electrons. They
are connected by a hybridisation which is characterised
by the energy Vk. If we identify this contribution with the
interacting part of the Hamiltonian, we recognise that the
remaining contribution is not diagonal in the usual sense.
This is due to the representation of the f electrons by
Hubbard operators and results from the incorporation of
their strong Coulomb interaction. Consequently, we use
for the generator the more general form

η(�) =
∑

kσ

ηk(�)
(
c†kσf̂kσ − f̂ †

kσckσ). (10)

The coefficient ηk has to be determined later. A similar
definition has already been used for the flow equations
analysis of related models [21,22].

A first remarkable result of the above choice for the
generator is the generation an f electron hopping of the
form

Hff =
∑

i�=jσ

tij(�) f̂ †
iσ f̂jσ (11)

as a consequence of the evaluation of the commutator in
equation (5). A detailed discussion of all contributions is
given below. The dispersion of the felectrons is obtained
by the Fourier transform of the hopping matrix element tij
with the exclusion of local processes

∆k(�) =
1
N

∑

i�=j

tij(�) e−ik(Ri−Rj). (12)
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With this additional interaction term the Hamiltonian of
the flow results in the following form:

HPAM(�) =
∑

kσ

εk(�) c†kσckσ

+
∑

kσ

(
εf (�) + ∆k(�)

)
f̂ †
kσf̂kσ

+
∑

kσ

Vk(�)
(
c†kσ f̂kσ + f̂ †

kσckσ

)
+ E(�). (13)

Besides the hopping of the f electrons an additional en-
ergy shift E(�) was introduced.

As a general convention for the upcoming consid-
erations we suppress the explicit declaration of the �-
dependence of all energies. We only use it in some cases in
order to avoid confusions. Furthermore, we use for a cer-
tain quantity Q the representation Qi for its initial value,
i.e. Q(� = 0), and Q∗ for the limit � → ∞.

Equation (5) poses the central relation of the flow
equation method, thus our task is the evaluation of
the commutator of the generator (10) and the Hamilto-
nian (13). As the scheme suggests the resulting contribu-
tions determine the flow of the Hamiltonian. The com-
mutator can be easily calculated by making use of the
commutator relation (4) for the Hubbard operators. By
doing so we arrive at the following result:
[
η, H

]
= −

∑

kσ

ηk

(
εk − εf

) (
c†kσ f̂kσ + f̂ †

kσckσ

)

+
1√
N

∑

kσ

∑

i�=j

ηk tij e−ikRiP 0
i c†kσf̂jσ + h.c.

+
1√
N

∑

kσσ′

∑

i�=j

ηk tij e−ikRi f̂ †
iσ′ f̂iσc†kσf̂jσ′ + h.c.

+
1
N

∑

kk′

∑

iσ

ei(k′−k)Ri ηkVk′ c†kσck′σP 0
i + h.c.

− 1
N

∑

kk′

∑

iσσ′
ei(k′−k)Ri ηkVk′ c†kσck′σ′ f̂

†
iσ′ f̂iσ+h.c.

− 1
N

∑

kσ

∑

ij

2e−ik(Ri−Rj)ηkVk f̂ †
iσ f̂jσ. (14)

In the first term we recognise a contribution, which pos-
sesses the form of the hybridisation interaction. The last
term represents the generated hopping of the correlated
f electrons, whose generation we have already discussed
in the last paragraph. In terms of Hubbard operators both
contributions can be characterised as one-particle contri-
butions, whereas the remaining part is comprised of two-
particle interactions. The second and the third term both
correspond to a hybridisation-like interaction, which cou-
ples to an empty and a singly occupied f site, respectively.
Alike the usual hybridisation term they alter the number
of particles in the respective electron subsystem by one.
In contrast the interactions in the fourth and fifth line do
not change the number of particles within the conduction
band or within the f electron subsystem. The penultimate
term can be regarded a Coqblin-Schrieffer interaction.

To cope with all contributions of equation (14) we are
obliged to introduce a truncation scheme. The objective
of this is to keep the Hamiltonian in the form (13). This
task may be accomplished by various techniques, one of
them is the normal ordering of the operators [4]. Because
normal ordering must be defined with respect to a bilinear
Hamiltonian, it is more convenient to use an alternative
scheme here. We simply decouple the higher interactions
by use of a Hartree-Fock decoupling. In this context the
fourth line of (14) is evaluated as

1
N

∑

kk′

∑

iσ

ei(k′−k)Ri ηkVk′ c†kσck′σP 0
i + h.c.

→ 2
∑

kσ

ηkVk〈P 0
i 〉 c†kσckσ − 2

N

∑

ik

∑

σσ′
ηkVk〈nc

kσ〉 f̂ †
iσ′ f̂iσ′

+
2
N

∑

ikσ

ηkVk〈nc
kσ〉

(
1 − 〈P 0

i 〉
)

(15)

where the representation 〈nc
kσ〉=〈c†kσckσ〉 and the relation

P 0
i +

∑
σ f̂ †

iσ f̂iσ = 1 were used. Here the expectation values
are to be evaluated with regard to the Hamiltonian (1),
thus they are constant during the entire flow. Obviously,
the first two terms on the right hand side contribute to
the one-particle terms of the Hamiltonian, whereas the last
one results in an energy shift. It should be emphasised that
this factorisation scheme preserves the character of the
initial interaction with regard to the number of particles
in each electron subsystem. In equation (15), for example,
both the interaction on the left hand side and the resulting
terms on the right hand side preserve the number of c and
f electrons. Furthermore, the local projector P 0

i remains
untouched by such a kind of approximation. A detailed
derivation of the decoupling of the remaining interaction
is given in Appendix A.

If we collect all the terms that are provided by the
factorisation scheme, we recognise that the occurrence of
the expectation value 〈P 0

i 〉 is always accompanied by the
expectation value 〈nf

iσ〉. As we have mentioned above the
first denotes the average number of empty f sites, and the
latter represents the number of singly occupied f sites.
Since we consider the non-magnetic phase in the present
paper, we can deduce the relation 〈nf

iσ〉 = (1 − 〈P 0
i 〉)/νf

from the completeness relation for the local f configu-
ration space. As a consequence of this we conclude that
〈P 0

i 〉 is of order ν0
f whereas 〈nf

iσ〉 is of order ν−1
f . The

same becomes obvious for the contributions for the en-
ergy εf , where the terms of order ν0

f come from the parts
∝ P 0

i , and the terms of order ν−1
f are given by the con-

tributions ∝ f̂ †
iσ f̂iσ. As a simplification we consider in the

following the case of great degeneracy of the electrons, i.e.
νf → ∞, and neglect all terms of order ν−1

f . The spirit of
this approximation is rather similar to the SBMF theory,
though both approaches cannot be simply compared on
this level. Eventually, we arrive at the following system of
differential equations for the one-particle energies of the



K. Meyer: Flow equation approach to heavy fermion systems 21

Hamiltonian (13)

dεk

d�
=2〈P 0

i 〉ηkVk (16)

d∆k

d�
= − 2ηkVk (17)

dεf

d�
= − 2

N

∑

kσ

〈nc
kσ〉ηkVk − 1

N

∑

kσ

〈Akσ〉ηk∆k (18)

dVk

d�
= − (

εk − εf − 〈P 0
i 〉∆k

)
ηk (19)

dE

d�
=

2
N

∑

ikσ

〈nc
kσ〉

(
1 − 〈P 0

i 〉
)
ηkVk

+
1
N

∑

ikσ

〈Akσ〉
(
1 − 〈P 0

i 〉
)
ηk∆k. (20)

The system possesses the initial conditions εk(� = 0) = εi
k,

εf (� = 0) = εi
f , Vk(� = 0) = V i

k and ∆k(� = 0) = E(� =
0) = 0. From the above equations we can immediately
conclude 〈P 0

i 〉∆k(�) = εi
k − εk(�) and E(�) = N(εi

f −
εf (�))(1−〈P 0

i 〉) so that ∆k can be eliminated completely,
by making use of the first relation.

At this point we emphasise that we have not used
perturbational arguments with respect to the hybridisa-
tion strength nor have we used a mean-field decoupling of
the Coulomb interaction within the above approximation
scheme. This fact is very important with regard to the
description of heavy fermion behaviour.

With the form-invariant Hamiltonian (13) we know
that in the limit � → ∞ the resulting effective Hamiltonian
is of the form

H∗
PAM =

∑

kσ

ε∗kc†kσckσ +
∑

kσ

(
ε∗f + ∆∗

k

)
f̂ †
kσf̂kσ + E∗.

(21)

It describes two decoupled subsystems of uncorrelated and
correlated electrons and can therefore not be regarded as
diagonal. This fact is the main difference to other ap-
proaches, such as the SBMF theory, which leave a non-
interacting Hamiltonian. Another important difference is
that we do not need to incorporate a side condition, which
restricts the number of particles on each f sites, for we did
not made use of auxiliary boson fields.

3.2 Flow of observables

In the introduction we have already discussed the repre-
sentation of expectation values within the framework of
flow equations. There we concluded that expectation val-
ues as well as correlation functions can be easily evaluated
on the basis of the derived effective Hamiltonian, if we re-
gard the transformed operators at the same time. The
transformation of an arbitrary operator works quite sim-
ilar to the transformation of the Hamiltonian. If we con-
sider, in the first instance, the flow of the operator ckσ,
we can write the mapping in the form

dckσ

d�
=

[
η, ckσ

]
. (22)

Similar to the transformation of the Hamiltonian we have
to regard all the contributions that are generated by the
commutator on the right hand side. The operator, of
course, has to fulfil the boundary condition ckσ(0) = ckσ.
Hence we obtain the lowest order contributions simply by
evaluating the commutator with ckσ. With this results we
can infer the following form for the �-dependent operator

ckσ(�) = αk ckσ + βk f̂kσ. (23)

This is a linear combination of the ordinary operators ckσ

and f̂kσ with the weighting factors αk and βk, respectively.
It is the simplest possible representation for the flow of the
operator ckσ, and higher interactions that are generated
by the commutator must be truncated in the same man-
ner as we have treated the flow of the Hamiltonian [23].
The complete evaluation of the flow equation (22) yields
differential equations for the weighting factors

dαk

d�
= −βkηk〈P 0

i 〉 ,
dβk

d�
= αkηk. (24)

Here again the �-dependence has been omitted for the
reason of readability. Obviously, the initial values of the
weight factors are given by αi

k = 1 and βi
k = 0, and as a

consequence of unitarity they obey the relation

α2
k + 〈P 0

i 〉β2
k = 1. (25)

In a further step the coefficient βk can be eliminated, and
the flow of αk is governed by the equation

d
d�

arcsin
[
1 − 2α2

k

]
= 2

√
〈P 0

i 〉ηk. (26)

The transformation of the operator f̂kσ can be treated
likewise, and we obtain

f̂kσ(�) = −〈P 0
i 〉βk ckσ + αk f̂kσ. (27)

With the results of the previous paragraph we are now
in the position to evaluate all expectation values that oc-
cur in the differential equations by using the unitarity of
the transformation, i.e. 〈nkσ〉 = ∗〈c∗†kσc∗kσ〉∗. Here ∗〈· · · 〉∗
refers to the expectation value with respect to the fully
transformed Hamiltonian (21). By inserting the trans-
formed operators, we obtain for the non-local expectation
values

〈nkσ〉 = (α∗
k)2 ∗〈c†kσckσ〉∗ + (β∗

k)2 ∗〈f̂ †
kσ f̂kσ〉∗ (28)

and

〈Akσ〉 = 2 α∗
kβ∗

k

(−〈P 0
i 〉∗〈c†kσckσ〉∗ + ∗〈f̂ †

kσ f̂kσ〉∗
)
. (29)

In view of the Hamiltonian (21) it is clear that there
are no contributions from expectation values of the
form ∗〈c†kσ f̂kσ〉∗.

The derivation of the non-local expectation values,
which contain contributions from different lattice sites,
could be carried out rather intuitively, since we made use
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of a descriptive transformation scheme for the single oper-
ators. In contrast, the treatment of the local expectation
value 〈P 0

i 〉 turns out to be more difficult. Though the pro-
jector can be represented in terms of Hubbard operators
as P 0

i = f̂ †
iσf̂iσ, its transformation cannot simply be car-

ried out by the transformation of the single operators, for
this procedure would break the restriction for the f elec-
trons to empty and singly occupied sites. Instead of that
we must transform the entire operator P 0

i . The detailed
derivation of this expectation value is presented in Ap-
pendix B, and as result we obtain

〈P 0
i 〉 = 1 − 1

N

∑

kσ

[(
1 − (α∗

k)2
) ∗〈c†kσckσ〉∗

+
(
1 − (β∗

k)2
) ∗〈f̂ †

kσf̂kσ〉∗
]
. (30)

Altogether, this more sophisticated treatment can also be
applied in order to derive the non-local expectation val-
ues, if we transform them as pairs rather than as single
operators. The result of this evaluation, though, coincides
with the above derivation, and we can use the much easier
representation from the last paragraph first for reasons of
clearness and second as a starting point for the evaluation
of the Green’s functions.

Further on, we wish to discuss the form of the expec-
tation value which is provided by (30). If we alternatively
start out from the fact that the total number of particles
must be conserved under the unitary transformation, we
can derive this result in another way. The relation
∑

kσ

〈nc
kσ〉 +

∑

iσ

〈f̂ †
iσ f̂iσ〉 =

∑

kσ

∗〈c†kσckσ〉∗ +
∑

kσ

∗〈f̂ †
kσ f̂kσ〉∗

(31)
denotes the particle number conservation. If we use on the
left hand side the expression (28) for the expectation value
〈nc

kσ〉 and divide by the number of sites, we eventually
arrive at equation (30). Consequently, we can deduce that
the above derivation is consistent with the conservation of
the total number of particles.

As a remaining task we have to evaluate the expecta-
tion values ∗〈c†kσckσ〉∗ and ∗〈f̂ †

kσf̂kσ〉∗ with respect to the
effective Hamiltonian (21). As the subsystem of c electrons
simply consists of non-interacting fermions the respective
expression is determined by a Fermi distribution. The cal-
culation of the remaining f -subsystem is more complex as
these particles do not obey a simple statistics. It is ex-
pedient to calculate the demanded expectation value by
means of ordinary Green’s function calculations [24]. The
equation of motion for the f Green’s function is simply
given by

ω 〈〈f̂kσ; f̂ †
kσ〉〉(ω + iδ) =

〈{
f̂kσ, f̂ †

kσ

}
+

〉

+
〈〈[

f̂kσ, H∗]; f̂ †
kσ

〉〉
(ω + iδ) (32)

where we set � = 1. This representation suggests a cou-
pling to higher order Green’s functions, which can be seen
by the second term on the right hand side. In order to

obtain a closed equation of motion we again apply the
decoupling scheme of the last section and neglect contri-
butions of order ν−1

f . As result we obtain

〈〈f̂kσ; f̂ †
kσ〉〉(ω + iδ) =

〈P 0
i 〉

ω + is − (ε∗f + 〈P 0
i 〉∆∗

k)
(33)

and, by the application of the spectral theorem, the de-
sired expectation value reads

∗〈f̂ †
kσf̂kσ〉∗ = 〈P 0

i 〉 nF

(
ε∗f + 〈P 0

i 〉∆∗
k

)
. (34)

On the right hand side the Fermi distribution nF = (1 +
exp(βE))−1 has been introduced.

4 Integration of the flow equations

4.1 Analytical solution

The PAM during the flow is given by equation (13) and
leads to an effective Hamiltonian of the form (21), pro-
vided we have chosen a generator which ensures the van-
ishing of the hybridisation Vk. The evolution of the matrix
elements is given by a closed set of coupled differential
equations, which have to be evaluated for the derivation
of physical quantities. In a first step we try to find an an-
alytical solution. For this purpose we bring equation (19)
in the following form

ηk = − 1
2εk − εf − εi

k

dVk

d�
. (35)

Here we have substituted ∆k following the above discus-
sion. This equation provides a representation of ηk as func-
tion of the one-particle energies and allows us to elimi-
nate this quantity in all other differential equations. With
equation (35) we are now in the position to rewrite the
differential equation for the single-particle energy εk as

d
d�

[
ε2
k − εk(ε∗f + εi

k) + 〈P 0
i 〉V 2

k

]
= (εf − ε∗f)

dεk

d�
. (36)

As a simplification for the next discussions we assume that
the energy εf converges rather fast to its limit value, while
the main contribution to the evolution of the other en-
ergies occur at a larger �-scale. This assumption allows
us to replace εf (�) by the constant energy ε∗f . Such kind
of simplification is quite common in terms of flow equa-
tions [21,22]. With this approximation the equation (36)
can simply be integrated and we arrive at

(ε∗k)2 − ε∗k
(
ε∗f + εi

k

)
+ εi

kε∗f − 〈P 0
i 〉(V i

k)2 = 0 (37)

using the fact that Vk vanishes in the limit � → ∞. This
quadratic equation has the solutions

ε∗k =
1
2
(
ε∗f + εi

k

) ± 1
2
Wk (38)

where we have used the representation

Wk =
√(

ε∗f − εi
k

)2 + 4〈P 0
i 〉(V i

k)2. (39)
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Equivalently, we obtain the following solution for the f de-
grees of freedom

ε∗f + 〈P 0
i 〉∆∗

k =
1
2
(
ε∗f + εi

k

) ∓ 1
2
Wk. (40)

The latter describes the excitation energies of the f elec-
trons as suggested by equation (34). In order to derive
a simple equation for the energy εf we neglect the term
with 〈Akσ〉 on the right hand side of (18), and after having
integrated the resulting equation, we obtain

ε∗f − εi
f = − 1

N

∑

kσ

〈nc
kσ〉

〈P 0
i 〉

(ε∗k − εi
k) = − 1

N

∑

kσ

〈nc
kσ〉(V i

k)2

ε∗f − ε∗k
.

(41)
The simplification of a constant energy εf can also be
made for the derivation of the weighting factors and al-
low us the evaluation of expectation values. From (26) we
arrive at

(α∗
k)2 =

1
2

(
1 +

ε∗f − εi
k

Wk

)
. (42)

Altogether the results coincide with the expressions from
the SBMF theory. The excitation energies (38) and (40)
constitute the electronic structure of the system of two
gapped bands. The overall renormalisation of the f level
is provided by equation (41). These results are based on
the assumption of a fast convergence of εf compared to
all other energies and give us a rough estimate of the elec-
tronic structure of the full problem. However, a thorough
examination beyond this simplification requires a numer-
ical treatment of the differential equations. We would like
to stress that we have not used a particular choice for
the coefficient ηk. Thus the derived results are valid for
any ηk that yields a vanishing hybridisation for the fully
transformed Hamiltonian.

4.2 Numerical solution

The above derivation of an analytical solution for the dif-
ferential equations was based on further simplifications. A
more general solution can be provided by a numerical in-
tegration. While the analytical solution was independent
of a particular choice of the coefficient ηk, we now need to
determine this quantity for the numerical evaluation. An
expedient choice is given by

ηk =
(
2εk − εf − εi

k

)
Vk (43)

since the energy Vk vanishes when � goes to infinity. This
becomes obvious by inserting equation (43) into equa-
tion (19), for the differential of Vk is a negative quantity
in the entire integration range, while Vk itself is always
positive. The above choice is not dissimilar to Wegner’s
generator. However, it is not simply obtained by commut-
ing the interacting and the non-interacting part of the
Hamiltonian, as suggested by equation (7), in that the
non-interacting part for the present calculations incorpo-
rates the hopping of strongly correlated objects. In fact,
the derivation of the generator (43) uses a factorisation

scheme, which has been presented in detail in Section 3.1.
This particular form of the generator also triggers the
Hamiltonian flowing into a stable fixed point, as η com-
mutes with HPAM in the limit � → ∞. As a consequence
the differentials of the one-particle energies vanish in this
limit, which can be seen on the basis of equations (16–20).

The numerics generally comprises two tasks, one of
them being the numerical integration of the flow equa-
tions, which is done by a Runge-Kutta integration of fifth
order with adaptive step size control. The second part of
the numerical calculation is the self-consistent evaluation
of the expectation values 〈P 0

i 〉, 〈nc
kσ〉 and 〈Akσ〉.

Since the differential equations are coupled and pos-
sess a dependence on k-dependent expectation values, the
numerical integration turns out to be a rather arduous
task. Consequently, we restrict ourselves to the solution
of a one-dimensional system. As we consider merely the
paramagnetic phase of the PAM, we believe that one di-
mension is sufficient to examine the most general aspects
of heavy-fermion behaviour.

5 Results

In the following section we present the results of the nu-
merical calculations for the PAM. In a first step we analyse
the flow of the one-particle energies of the Hamiltonian.
All calculations are performed for systems of 1000 sites in
one dimension. As we have mentioned above, we merely
consider a dispersion-less hybridisation. Notwithstanding,
the hybridisation Vk shows distinct flows for different wave
vectors k due to its dependence on the electron energies
(cf. Eq. (19)). For the conduction electrons we use a con-
stant density of states (DOS), i.e. a linear dispersion in
one dimension, and we consider T = 0.

For the upcoming discussions we use lattice constant of
a = 1 and W = 2 for the bandwidth of the bare conduction
band, so that all energies are given in units of the half band
width, which is usually of order 1− 10 eV ∼ 104 − 105 K.
As we consider one-dimensional systems, the wave vector
is rather referred to as wave number.

5.1 One-particle energies

In the following discussion we address the one-particle en-
ergies εk, εf and Vk. For a particular parameter regime
their flow diagrams are depicted in Figures 1 and 2. For
the electron energies it is more convenient to investigate
the difference to their initial value, namely εk(�) − εi

k, as
a function of the flow parameter �. This quantity is shown
in Figure 1 for a range of wave numbers near the crossing
point. The latter is characterised as the particular wave
number, that divides the energies between increasing and
decreasing quantities. This behaviour can be understood
on the basis of equation (16), as the sign of the right hand
side depends on the wave number. For the system in Fig-
ure 1 we find positive energy differences ε∗k − εi

k above a
critical wave number of k = 0.499π. As the graph shows,
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all energies start off with small modifications up to val-
ues of � 	 1 before they enter a region of significant rise
or fall. In the region of � � 102 they have already con-
verged to their limit value. The most remarkable result of
their behaviour is definitely the sharp crossover between
increasing and decreasing energies.

A much simpler picture is provided by the graphs in
Figure 2. As demanded, the hybridisation energy Vk van-
ishes for all wave vectors for � � 102. In Figure 2 the
flow of the quantity V = 1/N

∑
k Vk is shown (solid black

line) beside the flow of the hybridisation Vk for the crit-
ical wave number k = 0.499π. For the latter the onset
of a significant modification is delayed to higher values of

�, and it drops sharply to zero in the region of � 	 102.
This suggests that the Vk with wave numbers near the up-
per and lower band edge are renormalised at lower values
of �. Altogether we can conclude that all hybridisation ele-
ments can be considered zero above � 	 102. On the other
hand the one-particle energy which characterises the local
f level sees a sharp increase in the region of � ∼ 100 − 101

and converges rather fast. The numerical results show that
the present choice for ηk triggers a smooth and continu-
ous evolution of the one-particle energies of the Hamil-
tonian (13). The convergence to their limit values occurs
on a characteristic scale in the region of � � 102. For
the present results we use the bound V = 10−10 as con-
vergence criteria for the numerical integration of the flow
equations. This corresponds to a value of the flow param-
eter � ∼ 3000−5000 in the considered parameter regimes.
However, for a better clearness the integration for the sys-
tem in Figure 2 is carried out up to a value of � = 104.

On the one hand we have a rather good convergence
of the flow equations due to their smoothness and their
evolution to a stable fixed point. On the other hand the
self-consistent evaluation of the expectation values is re-
stricted to certain parameter regimes. From the SBMF
theory we know that it cannot describe the phase where all
f sites are singly occupied, i.e. 〈P 0

i 〉 = 0. Likewise, in the
present approach we only obtain valid results for a finite
number of empty f sites, and the solution breaks down as
〈P 0

i 〉 vanishes. This breakdown coincides with the energy
ε∗f dropping below the chemical potential. However, it is
possible to obtain solutions near this critical point. The
limit of singly occupied f sites can be approached either by
decreasing the hybridisation energy or by increasing the
difference µ − εi

f . With a fixed value for εi
f the solution

breaks down below a critical value of V i, and, similarly,
this point is reached for a fixed V i below a critical εi

f .
Stable solutions for small expectation values 〈P 0

i 〉 can be
obtained, preferably, at rather moderate values of µ − εi

f

and small V i. This restriction is believed to be lifted up
by considering corrections of order ν−1

f [25].

Within the above factorisation scheme it is not suffi-
cient to incorporate the ν−1

f contributions simply by con-
sidering them in equations (16–20). Indeed, it turns out
that this procedure would lead to unphysical solutions es-
pecially in the case of small νf . On the other hand the
dynamics of the f electrons is even more affected by these
corrections and cannot be properly calculated in the limit
of small degeneracy. A consistent consideration of the νf

therefore needs an enhancement of the factorisation pro-
cess. As we pointed out in Section 3.1 the decoupling of the
higher order interactions preserves their character with re-
spect to the variation of the particle numbers for each sub-
system. This assumption is too restrictive in the case of
small degeneracy, as charge fluctuations which are induced
by the flow of the Hamiltonian become more important.
Obviously, the extension of the factorisation scheme in this
sense would lead to a more complex system of differential
equations and is not considered in the present work.
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Fig. 3. Dispersion of the quasiparticles for the system with
parameters as in Figure 1. The energies ε∗k and ε∗f +〈P 0

i 〉∆∗
k are

represented by solid black and blue lines, respectively, whereas
the the analytical dispersions are represented by staggered
lines. The dotted line stands for ε∗f .

5.2 Electronic properties

In this section we present the numerical results for the
electronic structure of the PAM. The dispersion relations
of the quasiparticle energies are shown in Figures 3 and 4.
The general form of the one-particle energies is quite simi-
lar to the results of the SBMF theory. In both approaches
the spectrum splits in two bands which are divided by
a finite gap. Considering the chemical potential lying in
one of the bands, the system possesses a metallic ground
state. The situation of an insulator is also conceivable, if
µ is right in the gap. In the following considerations we
only focus on the metallic case, though the insulating case
can also be examined within the framework of flow equa-
tions [26].

The quasiparticle energies in Figure 3 are obtained for
a system with εi

f = 0.9, V i = 0.3 and νf = 2. The chemical
potential is at µ = 1 and the bandwidth of the conduction
electron band is W = 2. Since we have neglected terms of
order ν−1

f within our calculations, the presented results for
a twofold degenerate f level are deemed an extrapolation
down to small values of νf . This kind of assumption has
been frequently used in terms of various 1/νf expansions
in order to describe physical relevant systems. The exci-
tation energies ε∗k (solid black line) and ε∗f + 〈P 0

i 〉 (solid
blue line) form two continuous bands, that are separated
by an indirect gap. The latter denotation refers to the
fact, that the minimal excitation energy from the lower
to the upper band occurs at different wave vectors. The
renormalised energy ε∗f (dotted line) lies right in the cen-
tre of this gap. The self-consistently evaluated results for
this energy and for the expectation value of the empty
f sites are obtained as ε∗f = 1.032 and 〈P 0

i 〉 = 0.285,
which states, that the system is well within the mixed-
valent regime. Though the results from the SBMF theory
of ε∗f,SB = 1.111 and 〈P 0

i 〉SB = 0.577 also suggest a mixed-
valent system, the latter is significantly further away from
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Fig. 4. Dispersion of the quasiparticles as in Figure 3 for a
system with εi

f =0.9, V i =0.2 and νf =2.

the integral-valent state. This tendency is a general result
of the flow equations approach and can be better under-
stood in the context of a characteristic energy scale (cf.
Sect. 5.3 below). The quasiparticle energies obtained from
the numerical solution can be compared to those of the
analytical treatment in Section 4.1. Their analytical ex-
pressions are given by equation (38) and equation (40),
which have proved to be formally equivalent to the corre-
sponding results of the SBMF theory. For the expectation
value 〈P 0

i 〉 and the energy ε∗f we have used the numerically
evaluated results in Figure 3. The graphs show a qualita-
tively good coincidence of both results for the excitation
energies. However, near the crossing point of c-like and
f -like excitations the deviations become most significant.
Especially, the upper band shows a slight depletion near
the crossing point, which results in a Van Hove-like sin-
gularity in the quasiparticle DOS. This feature is a result
of the consideration of a renormalisation of the energy εf

on a large �-scale, which is driven by local fluctuations.
The analytical solution is based on the assumption of a
fast flow of this energy to its limit value, which is con-
trasted by Figures 1 and 2. Here we perceive the charac-
teristic �-scale of all energies in the same region. However,
the quasiparticle energies of the analytical solution show
a good correspondence to their numerical counterparts.

Whereas the system in Figure 3 was classified as
mixed-valent system, Figure 4 is very close to the integral-
valent or Kondo behaviour. This manifests itself in the
very small expectation value 〈P 0

i 〉 = 0.083 and the energy
ε∗f = 1.003 lying only slightly above the chemical poten-
tial. This system also features an evident decrease of the
gap width. In comparison with that result the SBMF the-
ory delivers 〈P 0

i 〉SB = 0.479 and ε∗f,SB = 1.036 indicating
a mixed-valent behaviour. This distinctive tendency of the
flow equation result towards integral-valence is discussed
in connection with the Kondo temperature in Section 5.3
below.

The drastic change in the character of the quasiparti-
cles from c to f character is a key result of the numerical
calculations, as this contributions evolve from the bare
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Fig. 5. Weighting factors (α∗
k)2 (black solid line) and

〈P 0
i 〉(β∗

k)2 for the same system as in Figure 3.

conduction electron band and the dispersion-less f level,
respectively, during the flow. This fact also ensures the
right result in the limit of a system without hybridisation.
Notwithstanding, the different types of excitations form
two continuous bands. In the context of the SBMF theory
the side conditions are usually chosen in the way that each
quasiparticle bands carries a single character. The switch
of the excitation character in each band is also reflected
by a change in the behaviour of the weighting factors α∗

k
and β∗

k. The dispersion of their squares is shown in Fig-
ure 5. As the evaluation of the expectation values in Sec-
tion 3.2 incorporates both the quasiparticle energies and
the weighting factors, these quantities are not affected by
the switch of the excitation character.

5.3 Kondo temperature

Historically, the Kondo temperature TK was introduced
as a low energy scale associated with the screening of a
magnetic impurity in a metallic host. The microscopic
models for the description of such a situation are the
single impurity Anderson model (SIAM) and the single
impurity Kondo model (KLM). Renormalisation group
calculations [27] as well as SBMF theory [7,25] show a
dependence of this energy scale on the Kondo coupling
J = (V i)2/|εi

f − µ| of the form

kBTK ∝ exp
[
− 1

Jνfρ0

]
. (44)

This relation states, that this energy scale vanishes ex-
ponentially as V i goes to zero, a result that cannot be
obtained by ordinary perturbation theory in V i. In a peri-
odic array of magnetic impurities beside the conventional
screening of the local moments a coherence scale T ∗ seem
to exist, which is referred to in the literature as coher-
ence temperature, indicating the onset of Fermi-liquid be-
haviour. Whereas the Gutzwiller calculations for the PAM
suggest a significant enhancement of T ∗ compared to the

Kondo temperature of the SIAM, the SBMF theory pro-
vides a coincidence of both temperatures for small T ∗.
The comparison of both energy scales has been dedicated
a controversial discussion. While some numerical works
show an enhancement of T ∗ for systems at half filling [11],
a more qualitative discussion by Nozières [28] relates this
issue to the so-called exhaustion problem. As Nozières
points out, only a fraction of nscr = ρ0TK conduction
electrons contributes to the screening of local moments.
As a consequence of this, he deduces an upper bound
of T ∗ = ρ0T

2
K/nf , where nf is the number of magnetic

impurities, for the lattice energy scale. This behaviour
is supported by numerical calculations by Vidhyadhiraja
et al. [13].

In accordance to the SBMF theory [25] we define the
Kondo temperature by the difference of the renormalised
f level and the chemical potential as

kBT ∗ = ε∗f − µ. (45)

As we have mentioned at the beginning of this section,
our method provides valid results in a certain parameter
regime. By lowering the hybridisation V i or by increasing
the difference µ − εi

f the self-consistency scheme breaks
down as the expectation value 〈P 0

i 〉 vanishes. The vanish-
ing point coincides with εi

f slipping below the chemical
potential, which is consistent with the assumption of pos-
itive results for the lattice Kondo temperature.

The evaluation of the Kondo temperature also al-
lows us to estimate the resulting effective masses of the
quasiparticles by comparing this energy scale to the band
width of the bare conduction electrons. This leaves us
with the relation m∗/m ∼ W/kBT ∗. If we consider the
system in Figure 3, we obtain an effective quasiparticle
mass of m∗/m ∼ 60, indicating the system being in the
mixed-valence regime. The enhancement of the quasipar-
ticle mass is due to the flatness of the quasiparticle band
near the Fermi surface, and it is also associated with a
large quasiparticle DOS. For the integral-valence system in
Figure 4 we even deduce an effective mass of m∗/m ∼ 600.

To address the issue of the functional trend of the
Kondo temperature for the numerical solution, we evalu-
ate this quantity by varying the coupling J . In particular,
we examine the dependence of T ∗ on the hybridisation V i.
The result for the system with εi

f = 0.9 is shown in Fig-
ure 6. Here V i is gradually decreased until the solution
breaks down below the value V i = 0.11. The numeri-
cal results are represented by circles, and the blue solid
line characterises the fit β exp(−δ/Jνfρ0). Our findings
for the fit parameters are β = 0.20 and δ = 1.65. The lat-
ter identifies the value of the exponent and is significantly
enhanced to the corresponding value for the SIAM, i.e.
δ = 1. That means that the lattice energy scale features a
remarkable reduction. As we have mentioned above, this
behaviour gives credence to the exhaustion scenario.

5.4 Green’s functions

In Section 2.2 we have explained the evaluation of correla-
tion functions within the framework of the flow equation
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Fig. 6. Kondo temperature as a function of 1/J (see text) for
a system with εi

f =0.9 and νf =2. The blue solid line represents
the fit β exp(−δ/Jνfρ0) with β=0.20 and δ=1.65.

method. As such quantities are invariant with respect to
the unitary transformation, we are in the advantageous
position of describing them with respect to a simple ef-
fective Hamiltonian. In this context we use the results for
the transformed operators from Section 3.2. For the con-
duction electrons this yields

〈〈ckσ; c†kσ〉〉(ω + iδ) =
(α∗

k)2

ω + iδ − ε∗k

+
〈P 0

i 〉(β∗
k)2

ω + iδ − (ε∗f + 〈P 0
i 〉∆∗

k)
. (46)

Likewise we arrive at a representation for the f -electron
Green’s function:

〈〈f̂kσ; f̂ †
kσ〉〉(ω + iδ) = 〈P 0

i 〉
1 − (α∗

k)2

ω − ε∗k

+ 〈P 0
i 〉

(α∗
k)2

ω − (ε∗f + 〈P 0
i 〉∆∗

k)
. (47)

The electronic structure can be made descriptive by eval-
uating the DOS of the c and f electrons. These quantities
are given by ρc(ω) = −1/(πN)

∑
k Im〈〈ckσ; c†kσ〉〉(ω + iδ)

and similarly for the f DOS. The results are shown in
Figure 7 for the same system as in Figure 3. Here we have
used Lorentzian broadening with a width of s = 10−4. The
DOS of the c electrons remains mainly flat as we expect
from the constant DOS for the bare conduction electrons,
but it shows a gap around the renormalised energy ε∗f .
On the other hand, the DOS of the f electrons increases
sharply around the gap, meaning that there is a high DOS
at the Fermi energy (µ = 1). This picture qualitatively co-
incides with the electronic structure obtained from other
approaches to the PAM, such as the SBMF theory, and
conveys the idea of heavy quasiparticles. A remarkable
difference to the SBMF result is an additional excitation
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Fig. 7. Densities of state ρc(ω) (black solid line) and ρf (ω)
(blue solid line) for the same system as in Figure 3.

peak in the upper band, which is due to the above dis-
cussed deformation of the quasiparticle bands (cf. Fig. 3).
It possesses the character of a Van Hove-like singularity,
as the DOS becomes very small in this energy range. This
large DOS comes from the consideration of local fluctua-
tions, which lead to a renormalisation of the f level. This
can be contrasted to the case, in which we keep this energy
constant during the flow process. With this assumption
the quasiparticle bands coincide with those of the SBMF
theory and do not show this type of excitation.

6 Conclusions

In this paper we have presented the description of heavy
fermion behaviour within the framework of Wegner’s
flow equation method. This work provides a new semi-
analytical approach to HFS. The basic idea of this scheme
is the derivation of an effective Hamiltonian, that de-
scribes the essential physics of the system. Though this
Hamiltonian is not diagonal in terms of usual fermion
creation and destruction operators, it characterises two
decoupled subsystems of electrons. Due to the Hubbard
operators we have used for the f electrons, the according
subsystem needs further approximations for the evalua-
tion of physical properties, such as expectation values and
correlation functions. In general, our findings confirm the
picture that is provided by previous calculations, such as
the SBMF theory. However, the flow equation approach
to the PAM yields an additional excitation in the upper
quasiparticle band and a significant decrease of the Kondo
temperature.

In order to obtain a closed set of differential equa-
tions, we had to resort to a decoupling approximation,
and we have only considered contributions in the lead-
ing order of νf . The idea of the second step is similar
to the procedure used in the SBMF theory. However, in
this context the two approaches cannot be compared in a
one-to-one fashion. As we have seen in the discussion of
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Section 5.1 an improvement of the present approximations
can be obtained by an enhancement of the factorisation
scheme due to the importance of charge fluctuations in
the case of small degeneracy. An important difference of
the flow equation approach to the SBMF theory is the de-
termination of the energy ε∗f . Whereas in the SBMF the-
ory this energy is obtained by a mean field procedure and
has to be determined self-consistently, the present method
uses the integration of a differential equation. The proce-
dure of self-consistency within the flow equation method
only refers to expectation values. As we have shown in this
paper, the differential equations can be solved both ana-
lytically and numerically. Though the first was performed
on the basis of further simplifications, and it was intended
to give a rough estimate, it turned out to coincide qualita-
tively good with the numerical solution. In accordance to
the SBMF theory the present calculations show a restric-
tion to parameter regimes where the occupation number of
the f -sites is less than unity, as the solution breaks down
in the limit 〈P 0

i 〉 = 0. However, we obtain good results for
quite small deviations from this point. As we have stressed
in Section 5.1 this breakdown is a result of the scheme of
selfconsistency, while the integration of the flow equations
is rather robust and shows a good convergence even in this
limit.

In the present paper we studied the paramagnetic
phase of the one-dimensional system. From recent works
we know that the ground state of the KLM in one di-
mension is either ferromagnetic or non-ordered. On the
other hand DMRG studies for the U = ∞ PAM also
showed regions of short-range antiferromagnetism in the
Kondo regime [17], whereas the ground state is found to
be paramagnetic for the mixed-valent region. For the lat-
ter our results are consistent to those obtained in refer-
ence [17]. Near the Kondo regime magnetic interactions,
such as the RKKY interaction, become more important.
For a better understanding these contributions must be
incorporated in the present scheme. Due to the semi-
analytical character of the flow equation method we be-
lieve that this task could be accomplished for larger sys-
tem sizes as usually considered in the DMRG. Another in-
triguing issue which was addressed in recent works about
one-dimensional heavy fermion systems is the study of
Luttinger liquid behavior [29]. However, this subject was
merely discussed for the KLM and an occurence of a Lut-
tinger liquid in the PAM is still an outstanding problem.
The examination of this issue though needs a further en-
hancement of the calculations and cannot be obtained on
a simple mean-field level.

Our findings for the excitation of the quasiparticles al-
low a clear distinction of c and f contributions. Generally,
the electronic structure of the PAM comprises two quasi-
particle bands, which are divided by a gap. The DOS is
strongly enhanced at the Fermi level, resulting in quasi-
particle masses up to several hundreds of bar electron
masses. Such a behaviour characterises the experiments
for heavy fermion compounds. In comparison to previous
theoretical works on the PAM, the present paper shows
an additional Van Hove-like excitation peak in the upper

quasiparticle band, which is due to a significant flattening
of the dispersion.

We also have investigated the dependence of the Kondo
temperature on the hybridisation V i. This quantity van-
ishes exponentially for small values of V i. Our findings
for T ∗ are consistent with the qualitative arguments pro-
posed by Noziéres, suggesting a significant decrease of T ∗
compared to the Kondo temperature of the SIAM.

The author gratefully acknowledges K. Becker, R. Hetzel,
T. Sommer and M. Vojta for fruitful discussions and helpful
hints.

Appendix A: Decoupling scheme

Here we present the factorisation procedure discussed in
Section 3.1 for the contributions in equation (14). With
the denotations 〈c†kσckσ〉 = 〈nc

kσ〉 and 〈f̂ †
iσ′ f̂iσ〉 = 〈nf

iσ〉
we obtain

1
N

∑

kk′

∑

iσ

ei(k′−k)Ri ηkVk′ c†kσck′σP 0
i + h.c.

−→ 2
∑

kσ

ηkVk〈P 0
i 〉 c†kσckσ +

2
N

∑

ikσ

ηkVk〈nc
kσ〉P 0

i

− 2
∑

kσ

ηkVk〈P 0
i 〉 〈nc

kσ〉 (A.1)

1
N

∑

kk′

∑

iσσ′
ei(k′−k)Ri ηkVk′ c†kσck′σ′ f̂

†
iσ′ f̂iσ + h.c.

−→ 2
∑

kσ

ηkVk〈nf
iσ〉 c†kσckσ +

2
N

∑

ikσ

ηkVk〈nc
kσ〉 f̂ †

iσ f̂iσ

− 2
∑

kσ

ηkVk〈nf
iσ〉 〈nc

kσ〉. (A.2)

In order to obtain the appropriate contributions to
the one-particle terms of the Hamiltonian from equa-
tion (A.1) it is convenient to make use of the relation
P 0

i +
∑

σ f̂ †
iσ f̂iσ = 1. The remaining interactions are de-

coupled as follows

1√
N

∑

kσ

∑

i�=j

ηktije
−ikRiP 0

i c†kσf̂jσ + h.c.

−→
∑

kσ

ηk∆k〈P 0
i 〉

(
c†kσ f̂kσ + f̂ †

kσckσ

)

+
1
N

∑

ikσ

ηk∆k〈Akσ〉P 0
i

− 1
N

∑

ikσ

ηk∆k〈Akσ〉 〈P 0
i 〉 (A.3)
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1√
N

∑

kσσ′

∑

i�=j

ηk tij e−ikRi f̂ †
iσ′ f̂iσc†kσ f̂jσ′ + h.c.

−→
∑

kσ

ηk∆k〈nf
iσ〉

(
c†kσ f̂kσ + f̂ †

kσckσ

)

+
1
N

∑

ikσ

ηk∆k〈Akσ〉f̂ †
iσ f̂iσ

−
∑

kσ

ηk∆k〈nf
iσ〉〈Akσ〉 (A.4)

where 〈Akσ〉 = 〈c†kσ f̂kσ + f̂ †
kσckσ〉 was used.

Appendix B: Local expectation values

The expectation value 〈P 0
i 〉 is best evaluated by making

use of the the relation

P 0
i = 1−

∑

σ

f̂ †
iσ f̂iσ. (B.1)

Further we can take advantage of the translations invari-
ance of the system, which allows us to write 〈f̂ †

iσ f̂iσ〉 =
1/N

∑
j〈f̂ †

jσ f̂jσ〉. Consequently, it is convenient to regard
the unitary transformation of the operator

F =1/N
∑

iσ

f̂ †
iσ f̂iσ. (B.2)

Its �-dependence can be described in the usual way by
dF (�)/d� = [η(�), F (�)], where the generator is given
by (10). Thus the following ansatz for the operator is ex-
pedient

F (�) =
1
N

∑

kσ

(
A(1)(�) + A

(2)
k (�)

)
f̂ †
kσf̂kσ

+
1
N

∑

kσ

Bk(�)c†kσckσ

+
1
N

∑

kσ

Gk(�)
(
c†kσ f̂kσ + f̂ †

kσckσ

)
+

E(�)
N

. (B.3)

In this connection the boundary condition A(1)(�=0) = 1
hold, whereas all the other coefficients are equal to zero
for �=0. Evaluating the commutator we arrive at

[η, F ] = − 1
N2

∑

kσ

ηk

(−Bk + A(1) + 〈P 0
i 〉A(2)

k

)

× (
c†kσf̂kσ + f̂ †

kσckσ

)

+
1
N

∑

ik

∑

σσ′
2ηkGk〈nc

kσ〉f̂ †
iσ f̂iσ

+
1
N

∑

kσ

2ηkGk〈P 0
i 〉c†kσckσ

− 1
N

∑

kσ

2ηkGkf̂ †
kσf̂kσ

+
1

N2

∑

kiσ

2ηkGk〈nc
kσ〉

(
1 − 〈P 0

i 〉
)
. (B.4)

Here the decoupling approximation, which was discussed
in Section 3.1 is already done. As a result we obtain a
closed set of flow equations for the coefficients

dA(1)

d�
= − 1

N

∑

kσ

2〈nc
kσ〉ηkGk (B.5)

dA(2)

d�
= −2ηkGk (B.6)

dBk

d�
= 2〈P 0

i 〉ηkGk (B.7)

dGk

d�
= −(

Bk − A(1) − 〈P 0
i 〉A(2)

k

)
ηk (B.8)

dE

d�
=

∑

kσ

2ηkGk〈nc
kσ〉

(
1 − 〈P 0

i 〉
)
. (B.9)

The following exact relations can be derived

A(1) = 1 +
1
N

∑

kσ

〈nc
kσ〉A(2)

k (B.10)

A
(2)
k = − Bk

〈P 0
i 〉

(B.11)

E = N
(
1 − 〈P 0

i 〉
)(

1 − A(1)
)
. (B.12)

Furthermore the differential equation

〈P 0
i 〉

dG2
k

d�
+

dB2
k

d�
− A(1) dBk

d�
= 0 (B.13)

holds. As a simplification we regard the summation on the
right hand side of (B.10) a small correction, and we neglect
it. Such an approximation is well confirmed by numerical
simulations. As a consequence we obtain A(1) = 1 for the
entire flow, and the differential equation (B.13) can be
integrated straightforward

d
d�

arcsin
[
1 − 2Bk

]
= −2

√
〈P 0

i 〉ηk. (B.14)

With the help of the unitarity relation (25) and (26) we
can identify Bk = 〈P 0

i 〉β2
k, and the expectation value thus

reads

〈P 0
i 〉 = 1 − ∗〈F ∗〉∗

= 1 − 1
N

∑

kσ

[(
1 − (α∗

k)2
) ∗〈c†kσckσ〉∗

+
(
1 − (β∗

k)2
) ∗〈f̂ †

kσf̂kσ〉∗
]
. (B.15)

An equivalent procedure can be used in order to derive the
expectation values 〈c†kσckσ〉 and 〈Akσ〉. Due to their non-
local character the results coincide with those obtained
in Section 3.1. Therefore it is more reasonable to use the
single operator transformation, because this approach can
be used to describe correlation functions, as pointed out
in Section 5.4.
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